In line high pressure filters #### THE IMPORTANCE OF AN EFFICIENT FILTRATION The main cause of anomalies in hydraulic systems has to be attributed to the presence of contaminants in the fluid. The nature of the contaminant may be: gaseous, namely air mixed with the fluid; fluid, it depends on water penetrating the fluid; solid, therefore particles of various origins and dimensions. Customers who operate equipments are always focused on obtaining the best possible performance, lower energy consumptions and greater respect for the environment. These characteristics can be attained by using top quality components in the hydraulic system for generating and regulating the fluid power, which are also more sensitive to the presence of contaminants in the fluid. Starting from these requirements, we understand how important and fundamental it is to prevent the presence of air and water from mixing in the fluid tank by using dedicated solutions. It is also crucial to limit the presence of solid particles in the hydraulic circuit through a suitable filtering system, which is indispensable to maintain the project requirements of the system over time and to keep running costs low. The correct choice of a filter and its optimum position in the hydraulic system requires the same care and experience needed to choose all the other components. The use of filters with larger filtering surfaces reduces, at equal flow rates, the superficial contaminant load and therefore the filter's life is extended proportionally. To maintain the maximum efficiency of the system, the filters must have a clogging indicator showing the differential pressure on the filtering cartridge and to immediately point out when the cartridge needs replacing in order to prevent the by-pass valve from opening. #### The following factors should be analysed when choosing the ideal filter: - > The filtration degree required to protect the most sensitive component from contamination - The points of the circuit in which the filters have to be installed - The working pressure of the system - The maximum flow rate and the type of fluid to be filtered - > The duty cycle - The retention efficiency of the filtering cartridge - > The contaminant accumulation capacity of the filtering cartridge - The working ambient temperature Each filter used generates a pressure drop that increases continuously as time goes by. This pressure drop represents an efficiency index of the filter itself. When the hydraulic system is about to be assembled, all the components must be perfectly clean and the fluid has to be added through a device complete with a filter. During the test phase, it is advisable to run some work cycles at low pressure in order to create the best possible conditions for all the components. #### **TECHNICAL CHARACTERISTICS** The filters of the HF735 series are connected to the pressure line of the circuit and they protect the system's components against contaminant particles. The standard filters are supplied with by-pass valve calibrated at 87 psi (6 bar). For applications where the maximum protection of the system is requested, such as servo drives or proportional controls, the filters are equipped with highly resistant filtering elements (versions "HC") and do not have a by-pass valve. - Flow up to 40 US gpm (150 l/min) - Maximum working pressure 4640 psi (320 bar) - High efficiency multilayer system - Direct mounting on manifold | MATERIALS | | |--------------|--| | Head | Spheroidal cast iron
GS 450-10 UNI ISO 1083 | | Bowl | Extruded steel | | Seals | Buna - Viton | | End cap | Zinc plated steel | | Inner tube | Zinc plated steel | | Filter media | Inorganic micro-fibre glass | | FLUID COMPATIBILITY Conforming to ISO 2943 (Norm ISO 6743/4) | | | |--|-----------------------------|--| | Oil mineral (1) | HH - HL - HM - HR - HV - HG | | | Water emulsion (1) | HFAE - HFAS | | | Water glycol (1) | HFC | | | Syntetic fluid (2) | HS - HFDR - HFDU - HFDS | | | (1) With Buna seals | | | | (2) With Viton seals | | | | FLOW | | |------------------|-----------------------| | Flow max. | 40 US gpm (150 l/min) | | | | | PRESSURE | | | Working pressure | 4640 psi (320 bar) | | PRESSURE | | |---------------------------------|---------------------------------| | Working pressure | 4640 psi (320 bar) | | Testing pressure | 6960 psi (480 bar) | | Burst pressure | 9280 psi (640 bar) | | Element collapse pressure | 290 psi (20 bar) (version LC) | | rating (conforming to ISO 2941) | 3045 psi (210 bar) (version HC) | | BY-PASS VALVE | | |-----------------|----------------| | By-pass setting | 87 psi (6 bar) | 03/10.2015 | OPERATING TEMPERATURE | | | |-----------------------|----------------------------|--| | With Buna seals | -22 ÷ 195 °F (-30 ÷ 90 °C) | | | With Viton seals | -4 ÷ 230 °F (-20 ÷ 110 °C) | | #### ENDURANCE STRENGTH 1.000.000 cycle 0 ÷ 4640 psi (0 ÷ 320 bar) #### **DEGREE OF FILTRATION** Multi-pass test conforming to ISO 16889 (regulation in force) Contaminant ISO MTD - final Δp 87 psi (6 bar) | Code | Degree of filtration | Ratio
ß _{x(c)} | Percentage of efficiency | |-------|----------------------|----------------------------|--------------------------| | FG003 | 5 μm | ß _{5(c)} ≥ 200 | 99,5 % | | FG006 | 7 μm | ß _{7(c)} ≥ 200 | 99,5 % | | FG010 | 10 μm | ß _{10(c)} ≥ 200 | 99,5 % | | FG025 | 21 μm | ß _{21(c)} ≥ 200 | 99,5 % | Multi-pass test conforming to ISO 4572. (previous regulation) Contaminant ACFTD - final Δp 87 psi (6 bar) | Code | Degree of filtration | Ratio
ß _x | Percentage of efficiency | |-------|----------------------|-------------------------------------|--------------------------| | FG003 | 3 μm | ß ₃ ≥ 200 | 99,5 % | | FG006 | 6 μm | $\textrm{ß }_{\textrm{6}} \geq 200$ | 99,5 % | | FG010 | 10 μm | | 99,5 % | | FG025 | 25 μm | ß ₂₅ ≥ 200 | 99,5 % | #### INDICATORS (3) Visual differential indicator Visual electrical differential indicator Visual electrical differential indicator with thermostat (3) Characteristics and dimensions pag. 11 ICAT022-002 002 #### SIZING - PRESSURE DROP The total pressure drop of the filter is calculated by summing the pressure drop value in the housing to that in the filtering element. #### Total $\Delta p = \Delta p$ in housing + Δp in element In the filters of series HF735 in normal working conditions, the total Δp must not be more than 11 psi (0,75 bar) whereas, for use in harsh conditions, it must be within 14.5 ÷ 22 psi (1 ÷ 1,5 bar). To establish the values of pressure drop involved, the following pages provide some diagrams with curves referred to the use of mineral oils ISO VG46 with kinematic viscosity of 120 SSU (30 cSt) and density of 7.29 lb/gal (0,856 kg/dm³). #### **Example calculation** Filter HF735-20.106-AS-FG010-LC-B60-GD-B-DD-G Flow rate= 12 US gpm (45 l/min) Kinematic viscosity: 120 SSU (30 cSt) Oil density: 7.29 lb/gal (0,856 kg/dm³) Filtering degree: 10 µm Data obtained from the diagrams: Δp in housing = 2.00 psi (0,14 bar) (page 4) Δp in element = 7.25 psi (0,50 bar) (page 5) Total $\Delta p = 2.00 + 7.25 = 9.25$ psi (0,64 bar) (Δp is lower than maximum value admitted – therefore sizing is correct). If oil with different kinematic viscosity and different density is used, the values obtained from the diagrams shall be re-calculated considering the following indications: 1) The pressure drop of the housing is proportional with the oil density, therefore for oil with density different to 7.29 lb/gal (0,856 kg/dm³) the value of the Δp in the head-bowl will be: $$\Delta p \text{ in housing } = \frac{\Delta p \text{ of diagram (psi)} \cdot \text{Oil density (lb/gal)}}{7.29 \text{ (lb/gal)}}$$ [psi] $$\Delta p$$ in housing = $$\frac{\Delta p \text{ of diagram (bar)} \cdot \text{Oil density (kg/dm}^3)}{0.856 \text{ (kg/dm}^3)}$$ [bar] 2) The pressure drop of the element is proportional with the oil density and kinematic viscosity, therefore for oil with density different to 7.29 lb/gal (0,856 kg/dm 3) and kinematic viscosity different to 120 SSU (30 cSt) the value of Δp in the element will be: $$\Delta p$$ element = Δp of diagram (psi) • $\frac{\text{Oil density (lb/gal)}}{7.29 \text{ (lb/gal)}}$ • $\frac{\text{Oil viscosity (SSU)}}{120 \text{ (SSU)}}$ [psi] Or $$\Delta p \text{ element } = \Delta p \text{ of diagram (bar)} \cdot \frac{\text{Oil density (kg/dm}^3)}{0,856 \text{ (kg/dm}^3)} \cdot \frac{\text{Oil viscosity (cSt)}}{30 \text{ (cSt)}}$$ [bar] Now you sum the values of the pressure drop of the housing to the value of the pressure drop of the filtering element, always making sure the total Δp does not exceed the pressure limit of 11 psi (0,75 bar). #### PRESSURE DROP CURVES THROUGH THE BY-PASS VALVES The pressure drop values are directly proportional with the specific weight of the fluid and do not affect the establishment of the total pressure drop of the complete filter. The curves are obtained in the following conditions: Mineral oil type ISO VG46 Kinematic viscosity 120 SSU (30 cSt) Density 7.29 lb/gal (0,856 kg/dm³). #### PRESSURE DROP CURVES THROUGH THE HOUSING The curves are obtained in the following conditions: Mineral oil type ISO VG46 Kinematic viscosity 120 SSU (30 cSt) Density 7.29 lb/gal (0,856 kg/dm³). #### PRESSURE DROP CURVES THROUGH THE ELEMENT HEK85-20 The curves are obtained in the following conditions: Mineral oil type ISO VG46 Kinematic viscosity 120 SSU (30 cSt) Density 7.29 lb/gal (0,856 kg/dm³). - (1) HEK85-20.080 - (2) HEK85-20.106 - (3) HEK85-20.203 #### PRESSURE DROP CURVES THROUGH THE ELEMENT HEK85-30 The curves are obtained in the following conditions: Mineral oil type ISO VG46 Kinematic viscosity 120 SSU (30 cSt) Density 7.29 lb/gal (0,856 kg/dm³). - (1) HEK85-30.115 - (2) HEK85-30.223 6 002 ICAT022-002 ### **FLOW** | | | Degree o | f filtration | | |---------------|-------|-----------|--------------|-------| | | FG003 | FG006 | FG010 | FG025 | | | | FI | ow | | | Filter type _ | | Δp= 11 ps | i (0,75 bar) | | | e,pe | | | gpm
nin) | | | UE725 20 000 | 6.6 | 7.9 | 9.2 | 11.9 | | HF735-20.080 | (25) | (30) | (35) | (45) | | UE725 20 40C | 7.9 | 10.6 | 11.9 | 15.9 | | HF735-20.106 | (30) | (40) | (45) | (60) | | UE725 20 202 | 13.2 | 14.5 | 15.9 | 21.1 | | HF735-20.203 | (50) | (55) | (60) | (80) | | 115725 20 445 | 15.9 | 18.4 | 22.4 | 29.1 | | HF735-30.115 | (60) | (70) | (85) | (110) | | 115705 00 000 | 27.7 | 31.7 | 35.7 | 39.6 | | HF735-30.223 | (105) | (120) | (135) | (150) | #### **HF735-20 DIMENSIONS** ICAT_022_001_HF735 | | Weight | Α | |---------------|---------|-----------| | Filter type | kg | mm | | | (lbs) | (in) | | HE725 20 000 | 3,7 | 200 | | HF735-20.080 | (8.15) | (7.8740) | | 115725 20 400 | 4,1 | 226 | | HF735-20.106 | (9.03) | (8.8976) | | HF735-20.203 | 5,6 | 323 | | | (12.34) | (12.7165) | #### **HF 735-30 DIMENSIONS** B6R B6N | ы | 1 | | |----------|-----|--| | ē | ก่ | | | r | _ | | | ũ | _ | | | 3 | Ξ | | | | П | | | 0 | vi. | | | ò | 5 | | | 2 | 5 | | | _ | í | | | 0 | j | | | è | ĭ | | | ~ | 3 | | | - | 1 | | | | | | | \vdash | Ξ | | | - | τ | | | L | J | | | - | - | | | | | | | | | | | | | | 03/10.2015 | | Weight | Α | |----------------|---------|-----------| | Filter type | kg | mm | | | (lbs) | (in) | | HF735-30.115 | 6,0 | 255 | | HF735-30.115 | (13.22) | (10.0393) | | HF735-30.223 | 7,8 | 363 | | ПГ / 33-30.223 | (17.20) | (14.2913) | B60 #### **ELEMENTS DIMENSIONS FOR HF735** ICAT_011_004_HF760 Filtering elements with Δp - collapse pressure of 3046 psi (210 bar) are also available (please consult our technical department). Technical data for (MS) version elements are available on request. | | Ø A | ØВ | С | C Filtering | | Dirt holding capacity (ISO MTD)
∆p = 72.5 psi (5 bar) | | | | |--------------|-------------------|------------------|--------------------|--------------------|------------------|--|------------------|------------------|--| | Element type | | | | surface (AS) | FG003 | FG006 | FG010 | FG025 | | | | mm
(in) | mm
(in) | mm
(in) | cm²
(in²) | gr
(lbs) | gr
(lbs) | gr
(lbs) | gr
(lbs) | | | HEK85-20.080 | | | 87
(3.4252) | 415
(64.3251) | 2,3
(0.0051) | 3,0
(0.0066) | 3,3
(0.0073) | 4,8
(0.0106) | | | HEK85-20.106 | 25,5
(1.0039) | 46,5
(1.8307) | 113
(4.4488) | 560
(86.8002) | 3,1
(0.0069) | 4,0
(0.0089) | 4,5
(0.0099) | 6,5
(0.0143) | | | HEK85-20.203 | | | 210
(8.2677) | 1103
(170.9653) | 6,2
(0.0136) | 7,9
(0.0175) | 8,8
(0.0195) | 12,8
(0.0282) | | | HEK85-30.115 | 27,5 | 54,5 | 122
(4.8031) | 908
(140.7403) | 5,1
(0.0112) | 6,5
(0.0144) | 7,3
(0.0160) | 10,5
(0.0232) | | | HEK85-30.223 | (1.0827) (2.1457) | 230
(9.0551) | 1808
(280.2405) | 10,1
(0.0223) | 13,0
(0.0287) | 14,5
(0.0319) | 21,0
(0.0462) | | | 03/10.2015 #### **INDICATORS** #### **VISUAL DIFFERENTIAL** #### Code: H #### VISUAL ELECTRICAL DIFFERENTIAL #### Code: U 03/10.2015 | Differential pressure setting | 116 psi (8 bar) without by-pass | | | | | |-------------------------------|---------------------------------|--|--|--|--| | | 72.5 psi (5 bar) with by-pass | | | | | | Mary consider continue | 250 VAC | | | | | | Max. working voltage | 30 VCC | | | | | | Mary consider a comment | 3 A (resistivity) | | | | | | Max. working current | 3 A (inductive) | | | | | | Protection class | IP 66 | | | | | ### VISUAL ELECTRICAL DIFFERENTIAL WITH THERMOSTAT #### Code: W | 116 psi (8 bar) without by-pass | | | | | |---------------------------------|--|--|--|--| | 72.5 psi (5 bar) with by-pass | | | | | | 250 VAC | | | | | | 30 VCC | | | | | | 3 A (resistivity) | | | | | | 3 A (inductive) | | | | | | IP 66 | | | | | | 86 °F (30 °C) | | | | | | | | | | | #### ASSEMBLY AND REPLACING ELEMENT INSTRUCTIONS #### **ASSEMBLY** Once you have checked the integrity of the filter inside its package, proceed as follows: - A Take the protection caps off the oil inlet and outlet. - B Secure the filter to the attachment device via the flange's holes of the head (pos.6), checking the flow direction, which is determined by the IN and OUT incisions. - C If the clogging indicator (pos.9 10 11) is immediately mounted in the filter, take the protection cap off and screw the indicator in the dedicated seat, then tighten to a tightening torque of 531 lbf in (60 Nm). If the indicator is electric, complete the required connections. - D Start the circuit for a few minutes. - E Make sure there are no leaks. #### REPLACING ELEMENT Once the working hours limit indicated in the maintenance instructions of the system is reached, or when the clogging indicators point out the limit pressure drop created inside the filter, the cartridge must be replaced, remembering that this procedure involves the drainage of hydraulic oil and therefore you need to prepare suitable containers to collect the oil. #### Proceed as follows: - A Stop the system in "Machine stopped" status. - B Secure any shut-off valves on the hydraulic circuit. - C Unscrew the filter container (pos.1). - D Remove the clogged filtering cartridge (pos.5), making sure no residual particles have settled on the bottom (pos.1). - E Make sure the seal, the O-ring (pos.2 4) and the anti-extrusion ring (pos.3) are not damaged, otherwise replace them and consequently position the new ones correctly. - F Insert the new filtering cartridge, lubricating the sealing O-ring beforehand. - G Screw the container tight (pos.1) making sure the threading is screwed correctly. Tighten to a tightening torque as indicated on pages 8, 9. - H Start the machine for a few minutes. - I Make sure there are no leaks. #### Pos. Description - 1 Filter bowl - 2 Seal - 3 Anti-extrusion ring - 4 Sealing O-Ring - 5 Filtering element - 6 Filter head - 7 By-pass valve - 8 Sealing cap - 9 Visual differential indicator - 10 Visual electrical differential indicator - 11 Visual electrical differential indicator with thermostat - 12 Inlet and outlet ports' O-rings. When ordering spare parts, always specify the reference number, the filter code and quantity. Example: Spare part pos. 4 - HHP41879 - Qty 2 13 #### **HOW TO ORDER A COMPLETE FILTER** | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |-------|------------|----|-----------|----|------|-----|------|-----| | HF735 | - 20.080 - | AS | - FG010 - | LC | - B6 | - B | - DD | - G | | 1 | Filter type | CODE | |---|--|-------| | | See table page 8 and page 9 | HF735 | | | | | | 2 | Filtering surface | CODE | | | Standard | AS | | | Multilayer | MS | | | | | | 3 | Degree of filtration | CODE | | | 3 [μm] Micro-fibre glass | FG003 | | | 6 [μm] Micro-fibre glass | FG006 | | | 10 [μm] Micro-fibre glass | FG010 | | | 25 [μm] Micro-fibre glass | FG025 | | | | | | 4 | ∆p - Collapse pressure | CODE | | | 290 [psi]; (20 [bar]) | LC | | | 3045 [psi]; (210 [bar]) | HC | | | | | | 5 | Valves | CODE | | | By-pass setting 87 [psi] (6 [bar]) | B60 | | | By-pass setting 87 [psi] (6 [bar]) and no returne valve | B6N | | | By-pass setting 87 [psi] (6 [bar] and reverse flow valve | B6R | | | Without | B00 | | | Without by-pass, with no returne valve | B0N | | | Without by-pass, with reverse flow | B0R | | | | | | 6 | Seals | CODE | |---|---|------| | | Buna | В | | | Viton | V | | | | | | 7 | Indicator ports | CODE | | | Without | XN | | | Arranged | XA | | | Arranged with plug | DD | | | | | | 8 | Indicator | CODE | | | Without | G | | | Visual differential indicator | Н | | | Visual electrical differential indicator | U | | | Visual electical differential indicator with thermostat | W | 03/10.2015 Standard On request #### **HOW TO ORDER A REPLACEMENT ELEMENT** | | | 1 | | 2 | | 3 | | 4 | | 5 | | |-------|---|--------|---|----|---|-------|---|----|---|---|--| | HEK85 | - | 20.080 | - | AS | - | FG010 | _ | LC | - | В | | | 1 | Element type | CODE | |---|---------------------------|-------| | | See table pag. 10 | HEK85 | | | | | | 2 | Filtering surface | CODE | | | Standard | AS | | | Multilayer | MS | | | | | | 3 | Degree of filtration | CODE | | | 3 [μm] Micro-fibre glass | FG003 | | | 6 [μm] Micro-fibre glass | FG006 | | | 10 [μm] Micro-fibre glass | FG010 | | | 25 [μm] Micro-fibre glass | FG025 | | | | | | 4 | ∆p collapse pressure | CODE | |---|------------------------|------| | | 290 [psi] (20 [bar]) | LC | | | 3045 [psi] (210 [bar]) | HC | | | | | | 5 | Seals | CODE | | 5 | Seals | CODE | |---|-------|------| | | Buna | В | | | Viton | V | Standard On request | NOTES | : | |-------|---| 03/10.2015 | NOTES: | |--------| Full range of filters for all hydraulic circuits #### **Suction filters** HF 410 HF 412 HF 431 HF 434 HF 437 ### Tank mounted return line filters HF 502 HF 508 HF 547 HF 554 HF 570 HF 575 HF 578 ## Tank mounted return and suction line filters HF 525 #### In line filters Spin-On HF 620 HF 625 HF 650 ## In line medium and high pressure filters HF 690 HF 705 HF 710 HF 725 HF 735 HF 745 HF 748 HF 760 HF 761 #### **Accessories** Filler breathers Air filters Level and temperature gauges Pressure gauges Pressure/vacuum gauges Clogging indicators #### **IKRON S.r.I.** Via Prampolini, 2 - 43044 Lemignano di Collecchio - Parma - Italy Tel.: + 39 0521 304911 - Fax: + 39 0521 304900 **Videoconferecing IP** Videoconferecing IP www.ikron.it E-mail: info@ikron.it Replaces: HF 735 02 T A HF 735 03 T A Edition: 03/10.2015